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Abstract

Bunch length compression of a single proton bunch is studied by manipula-

tions of the rf voltage and phase. Analytical expressions for the compression

ratio, defined as the ratio of initial to the final bunch lengths, are derived for

a linear model. Results obtained from numerical simulations are compared

with experimental results. The ultimate maximum compression ratios are

found to be
√

2/(
√

3σφ,i) for the phase shift method and
√

8/(
√

3πσφ,i) for

the voltage manipulation method, where σφ,i is the rms rf-phase spread of the

initial beam bunch at the maximum rf voltage. Effects of space charge force

are also studied.
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I. INTRODUCTION

Techniques in bunch beam manipulation are important for attaining high quality beams

in accelerators and storage rings. In particular, bunch length shortening plays an important

role in achieving high capture efficiency for the secondary beam (such as anti-protons, kaons,

pions, muons, etc.) production, in emittance matching during a bucket to bucket transfer,

etc.

In synchrotron and storage rings, the bunch length compression of beams can be attained

by the manipulation of rf voltage and rf phase. This paper studies various experimental

procedures in bunch rotation of space charge dominated beams, and their dependence on

the operational parameters of the accelerators and beams. We organize our paper as follows.

Beam properties and experimental procedures in the IUCF Cooler Ring are discussed in

Sec. II. Results of our rf voltage manipulation experiments and numerical analyses are

presented in Sec. III. Results of our rf phase manipulation are compared with theory and

numerical simulations in Sec. IV. Effects of space charge force on our bunch rotation are

discussed in Sec. V. The conclusion is presented in Sec. VI.

II. BEAM PROPERTIES AT THE IUCF COOLER RING

The IUCF Cooler is a 6-sided storage ring with electron cooling [1]. The circumference

is 86.82 m with proton beam injected from the Cooler Injector Synchrotron (CIS) with a

circumference of 1/5 of that of the Cooler [2]. Our experiments were carried out in the

Cooler, where the betatron tunes were νx = 3.8 and νz = 4.82 so that nonlinear betatron

resonances were not important to the circulating beams. The PPA rf cavity was operating

at h = 5 harmonic. The basic parameters for our experiment are listed in Table I.

One proton bunch with intensity of several hundred µA was injected to the IUCF cooler

and the longitudinal beam profile was measured as a function of time while the rf voltage

or phase was being manipulated. The time evolution of the longitudinal beam profile was
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digitized at a rate of 12 kHz in synchronization with the rf cavity frequency. The interval

between consecutive beam profiles is 83.33 µs, while each data set consists of 500 profiles

and therefore has a time span of about 42 ms. Each profile is digitized at 2 ns per channel

and it has 502 channels corresponding to a time span of 1.004µs.

Figure 1 shows a typical longitudinal beam profile ρ(τ ) digitized in 2 ns time-step in the

IUCF Cooler. The centroid and rms bunch length of the beam can be obtained from the

integrals:

NB =
∫
ρ(τ )dτ, (1)

τ̄ =
1

NB

∫
τρ(τ )dτ, (2)

σ2
τ =

1

NB

∫
(τ − τ̄ )2ρ(τ )dτ, (3)

where NB is the number of particles in a bunch. Since the bunch profile was measured

in synchronization with the rf cavity frequency, there existed a time coordinate τs that

was synchronized with the rf wave, and the variation of τ̄ − τs is small. In fact, the time

dependence of τ̄ − τs measures the dipole mode of the beam. Figure 2 shows an example of

beam profile evolution during the bunch rotation through rf voltage manipulation. Note that

the beam profile during the bunch rotation deviates from Gaussian shape. The rms value

derived depends very much on the tail distribution. Thus we often resort our analysis to the

full width at half maximum (FWHM) method to derive the bunch length. Furthermore, the

rms bunch length is very sensitive to the background cut of the beam distribution, while the

FWHM is less sensitive to the background cut. Because we turned off the phase feedback

loop during our experiments, the beam loading on the rf system might induce a small dipole

mode oscillation, that may, in turn, cause asymmetry in the beam distribution shown in

Fig. 2.

With the synchrotron phase space coordinates φ = −2πfrf(τ − τs) as the synchrotron

phase coordinate relative to the synchronous phase and δ = ∆p/p0 as the fractional off-

momentum coordinate, the synchrotron mapping equation is [3]

φn+1 = φn + 2πhηδn, (4)
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δn+1 = δn +
eVrf

β2E
sinφn+1, (5)

where φn and δn are the phase space coordinates of a particle at the n-th turn, h is the

harmonic number, Vrf is the rf voltage, βc is the speed of the orbiting particle, η is the phase

slip factor, E is the beam energy, and the synchronous phase angle is φs = 0. Since it takes

thousands of revolutions to complete one synchrotron oscillation, the mapping equations

can be represented by differential equations, and the motion is described by a synchrotron

Hamiltonian

H =
1

2
hηδ2 +

eVrf

2πβ2E
(cosφ− 1), (6)

where the independent variable is the orbiting angle θ, which advances by 2π per revolution.

During the storage mode, proton beam in the IUCF Cooler Ring is cooled to the center

of phase space by an electron cooling system, where a dc electron beam at low temperature

is brought to exchange energy with the circulating protons. The cooling time is of the

order of 0.3 s [4]. Beam particles in an accelerator experience diffusion processes such as

beam-gas scattering, intrabeam Coulomb scattering, rf noise, power supply ripple, nonlinear

resonances, etc. The equilibrium phase-space distribution function of a stochastic-damping

system is given by [5]

ρ̃(φ, δ) =
NB

N exp (H/Eth) , (7)

where N is the normalization constant and Eth is the longitudinal thermal energy. If the

emittance of the cooled beam is small relative to the bucket area, the distribution function

is approximately Gaussian evidently shown in Fig. 1 [6].

In small bunch approximation, the rms bunch area (in eV-s) is given by

Arms = π στ σ∆E
=
πβ2E

hω0

σφ σδ ≈
πβ2Eνs

h2|η|ω0

σ2
φ, (8)

where νs =
√
h|η|eVrf/(2πβ2E) is the small amplitude synchrotron tune, σφ = hω0στ is the

rms beam width in the rf phase-coordinate, and ω0 is the angular revolution frequency. The

thermal energy is related to the rms bunch area by
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Eth =
hω0νs

πβ2E
Arms. (9)

The peak current Ipeak and the beam brightness B are defined by

Ipeak =
NBe√
2π στ

, B =
NB

Arms
. (10)

Figure 3 shows respectively the peak current (left) and beam brightness (right) vs the

average current. The spread in the experimental data reflects different injection conditions,

electron-cooling setting, and other un-controllable noises. On the other hand, Fig. 4 shows

a compilation of the initial rms bunch length vs the rf voltage for all of our experimental

data. The line corresponds to a simple formula of 28.1/V 1/4
rf ns, where Vrf is in Volts.

There is considerable spread in the bunch length at a given rf voltage due to different beam

currents, rf noise, etc. However, it seems that the initial phase space areas for most of our

experimental conditions are almost equal to Arms ≈ 6.6× 10−4 eVs.

Bunch length compression often employs rf voltage and phase manipulations. The rms

(or FWHM) bunch length can be derived during the dynamical evolution of bunch rotation.

In particular, the compression ratio, defined as the ratio of the initial to final bunch lengths

rc = στ,i/στ,f or rc = τFWHM,i/τFWHM,f (11)

can be obtained from the experimental data. We discuss the results of rf voltage and phase

manipulations below. A fair comparison of two methods will be discussed in Sec. VI.

III. BUNCH COMPRESSION BY RF VOLTAGE MANIPULATION

A. Results of rf voltage manipulation experiment

First, we report our experiment of bunch length compression by using the rf voltage

manipulation. The rf voltage was adiabatically decreased from Vrf = 350 V to a low cavity

voltage Vrf = V1, then it was non-adiabatically increased to a high cavity voltage Vrf = V2.

For the PPA cavity at the IUCF Cooler Ring, the achievable maximum rf cavity voltage is
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approximately 1000 V. The duration for adiabatic process was chosen to be 5-30 ms. Since

the synchrotron period at Vrf = 5 V is about 6.2 ms, beam loss will occur if the ramp-down

time is too short. The time for the non-adiabatic voltage jump was about 10 µs determined

mainly by the response of power supply circuitry and the Q-value of rf cavity. Different

values of V1 and beam currents are used in order to study the achievable compression ratio.

We should also note that the bucket area at Vrf = 5 V is only 3.8 times the average rms

bunch area of 6.6 × 10−4 eV-s. Beam loss may occur for low V1 values. Since the cooling

time was very much longer than the rf voltage manipulation time, bunch area should remain

conserved as shown evidently in the low rf voltage region of Fig. 4.

As the voltage is raised non-adiabatically to V2, the mis-matched bunch begins to rotate.

Figure 2 shows the longitudinal profiles digitized once in every 83.33 µs, which is a major

hardware limitation in our experiment. At the rf voltage of 1000 V, where the synchrotron

tune is high, we digitize on average 5.24 frames in one synchrotron period. If we missed the

peak of the first few synchrotron oscillations after the voltage jump, the beam bunch may

filament and the measured final bunch length would be much larger.

Figure 5 shows the bunch length derived from FWHM (left) and rms (right) methods

as a function of time. The bunch length is observed to increase in the first 30 ms when the

rf voltage is adiabatically lowered [6]. As the rf voltage is non-adiabatically increased to

1000 V, the bunch length begins to oscillate rapidly at twice the synchrotron frequency. If

we zoom into the first few synchrotron oscillations after the rf voltage jump, we will find that

we indeed missed the minimum bunch length of first few synchrotron oscillations, but the

bunch continued to perform rigid synchrotron motion after many synchrotron periods. A

possible explanation is that the bucket area at Vrf = 1000 V was about 8.9 times the bunch

area, and thus the synchrotron motion of the bunch was essentially linear. Furthermore, the

potential well distortion due to the space charge force may help to make the bunch rotate

more rigidly. Because the bunch shape is far from Gaussian during the bunch rotation stage,

we will report our data based essentially on FWHM analysis.

The results of compression ratio based on FWHM analysis derived from our experiments
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are shown as crosses in Fig. 6, where στ,i is the bunch length at Vrf = V1, and στ,f is the

minimum observable bunch length at Vrf = V2. For each voltage ratio V2/V1, there is a

compression ratio spread because the initial beam condition of each data set is not identical.

For instance, the initial rms bunch length στ,i has a range from 6 to 20 ns.

B. A model with linear synchrotron motion

First, we consider linear synchrotron motion. It is reasonable to assume that all non-

adiabatic processes involved in the experiment are instantaneous since they have a time

scale of 10 µs that is much less than the synchrotron period of 1.38 ms at the rf voltage of

V1 ≈ 100 V. In small amplitude approximation, the rms bunch length and height στ,i and

σδ,i are [3]

στ,i =

√
Arms

ω0

(
2|η|

πheV1β2E | cosφs|

)1/4

, (12)

σδ,i =

√
ω0Arms

πβ2E

(
heV1| cosφs|

2πβ2E|η|

)1/4

. (13)

Here Arms is the invariant rms phase space area in eV-s. Typically Arms ≈ 6.6× 10−4 eV-s

for about 109 particles. In the linearized model of synchrotron motion, the beam bunch

performs rigid quadrupole mode oscillations when the rf voltage is non-adiabatically raised

to V2. At 1/4 of the synchrotron period, the minimum rms bunch length becomes

στ,f =

√
Arms

ω0

(
2|η|

πβ2Eh| cosφs|

)1/4
(eV1)1/4

(eV2)1/2
. (14)

Thus the compression ratio, in linear model, depends only on the rf voltage ratio, i.e.

rc =
στ,i
στ,f

=

√
V2

V1

. (15)

The solid line in Fig. 6 shows the expected compression ratio in linear model. At a maximum

compression ratio, the phase space area of the beam fills up the entire bucket area for the

rf voltage V1. Thus the maximum compression ratio can be expressed as

rc,max =
AB,max

A , (16)

7



where AB,max is the maximum bucket area of the accelerator rf system, and A = 6Arms is

the phase space area of 95% of the bunch.

C. Numerical Simulation and Nonlinear Model

In reality, synchrotron motion is non-linear. Using the synchrotron mapping equations,

we track the evolution of the beam distribution. For each στ,i obtained from experiment,

the evolution of 10000 up to 80000 particles with an initial Gaussian distribution truncated

at the bucket edge is followed. We obtain the bunch length στ(t) each turn and hence the

minimum bunch length στ,f in the bunch rotation stage. The result is shown as circles in

Fig. 6. The spread in the compression ratio arises essentially from the spread in the initial

bunch length στ,i.

Because of nonlinear synchrotron tune spread, the resulting bunch compression ratio

deviates substantially from
√
V2/V1 when V2/V1 is large. Thus it is difficult to achieve the

maximum theoretical compression ratio Eq. (16). We also note that the compression ratios

obtained from experimental measurements are usually below the numerical simulations.

IV. BUNCH COMPRESSION BY RF PHASE MANIPULATION

A. Experimental Results

In order to compress the beam width, the rf phase is non-adiabatically shifted by π−2φs

so that the beam bunch sits at the unstable fixed point (UFP) π−φs of the rf bucket, where

φs is the synchronous rf phase angle.

The motion of particle near UFP is linear and hyperbolical, the bunch area is preserved

while the rf force compresses the bunch in one direction and stretches the bunch in another

direction. After a time of tufp, the rf phase is non-adiabatically restored, or the beam is

kicked onto a transfer line. The bunch compression ratio is given by [3]
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σφ,i
σφ,f

= exp(ωstufp), (17)

where σφ,i is the rms bunch length in rf phase just before the first phase shift, σφ,f is the

minimum observable rms bunch length after the second phase shift, and ωs = ω0νs is the

small amplitude synchrotron angular frequency.

Our experiment had been performed below transition with φs = 0. Each non-adiabatic

rf phase jump takes about 10 µs, or about 20 revolutions, while the time stays at the UFP

tufp is varied. The crosses on Fig 7 show the observed bunch compression ratio vs ωstufp,

where the solid line is the expected theoretical linear theory exp(ωstufp). Since the initial rms

bunch length στ,i has a range from 4 to 16 ns depending on the rf voltage and beam intensity,

the measured compression ratio data show also a spread of compression ratio at each ωstufp.

Note that when the compression ratio reaches a value of about 3. in our experiment at the

IUCF Cooler, it deviates also substantially from the linear theory.

B. Theoretical Description and Numerical Simulations

For particle simulation near UFP, we substitute the phase coordinate ϕ = φ − π in

Eq. (5). Particle motion near (ϕ, δ) = (0, 0) is hyperbolical. However the total phase space

area is preserved, thus the beam is stretched in one direction and compressed in another

direction. The amount of compression depends on the time tufp that the bunch stays at

the UFP. At a desired compression factor, the rf phase is shifted back to the SFP and the

bunch starts to rotate. Figure 8 shows the phase space distribution of the initial Gaussian

distribution (left), the phase space distribution after the rf phase is shifted back (middle),

and the phase space distribution after 3/8 of synchrotron period (right). Note here that the

process of bunch stretching is very linear as shown in the middle graph of Fig. 8.

The bunch profile during the bunch rotation substantially deviates from Gaussian dis-

tribution (see the bottom-right plot of Fig. 2). Thus it is difficult to analyze numerical

simulation data with rms or Gaussian fit. The diamond symbols in Fig. 7 shows the com-

pression ratio derived from the rms analysis of numerical simulations. The circles shows the
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compression ratio obtained from the FWHM analysis of same simulation data. The differ-

ence arises from the fact that the final bunch length differs from the Gaussian distribution.

Experimental data obtained from the FWHM analysis are shown as crosses in Fig. 7.

We will now derive the ultimate bunch compression ratio for the rf phase shift method.

In the normalized phase-space coordinate with P = −(h|η|/νs)(∆p/p), the Hamiltonian for

stationary synchrotron motion is transformed to (see p. 243 in Ref. [3])

H0 =
1

2
νsP2 + 2νs sin2 φ

2
, (18)

where νs is the small amplitude synchrotron tune, the orbital angle θ is the independent

variable, and (φ,P) are normalized conjugate phase-space coordinates. The Hamiltonian

has a stable fixed point (SFP) at (φ,P)
SFP

= (0, 0) and an unstable fixed point (UFP) at

(φ,P)
UFP

= (π, 0). The synchrotron Hamiltonian is autonomous (θ-independent), and thus

the Hamiltonian value is a constant of motion.

Near the UFP, the separatrix of the Hamiltonian in Eq. (18) can be approximated by two

straight lines crossing at 45◦ angles with the horizontal axis φ. When the rf phase is shifted

so that the beam sits on the UFP, the bunch width and height will stretch and compress

along the separatrix. The rate of growth is equal to exp(ωstufp) [3]. The maximum rf phase

coordinate φmax that a bunch width can increase and still stay within the bucket after the

rf phase is shifted back to SFP is given approximately by

1

2
φ2

max + 2 sin2(
φmax

2
) ≈ 2, (19)

where we assume linear approximation for particle motion near SFP. Thus we obtain φmax ≈
√

2. Using Liouville’s theorem, conservation of the phase space area, we find

πσ2
φ,i = πσP ,fσφ,f . (20)

Assuming that 95% of the beam particles reach φmax =
√

2 so that σP ,f =
√

2√
6
φmax =

√
2/3,

we find the compression ratio as

rc =
σφ,i
σφ,f

=
σP ,f
σφ,i
≈
√

2√
3σφ,i

, (21)
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The time needed to reach this maximum compression ratio is

ωst̂ufp = ln
1

σφ,i
+

1

2
ln

2

3
. (22)

Most of our experimental runs are in fact with φmax >
√

2. When the rf phase is shifted back

to the SFP, there has been beam loss and a much larger number of particles reside near the

bucket edges than in the voltage manipulation experiment. Here the final phase rotation

is 3/8 of a synchrotron period, also much longer than that in the voltage manipulation

experiment. As a result, longer tails with higher population are developed. This leads to

much larger deviation from a Gaussian profile. This explains why the FWHM analysis is

preferred over the rms analysis.

We did our phase shift experiments at rf voltages ranging from 250 to 825 V. Because of

the limitation of our digitizing hardware mentioned earlier, we digitize about 8.86 profiles in

every synchrotron revolution period at an rf voltage of 350 V. Although it is slightly easier to

catch the minimum bunch length profile than our experimental observation with rf voltage

manipulation, our results may still deviate from numerical simulations.

Another difficulty in our phase shift experiments is that the rf voltage remains at a

relatively low rf voltage during and after the phase shift. The synchrotron motion during

the bunch rotation stage would be much more non-linear because the ratio of bucket area to

the bunch area was smaller compared with that of the rf voltage manipulation experiments,

where the rf voltage at the final stage of bunch rotation was 1000 V.

The difficulty of nonlinear synchrotron motion in the final stage of bunch rotation can

be solved by using the buncher in the transport line. After proper bunch compression, the

beam is kicked out of the synchrotron and the R56 transport matrix element will compress

bunch, i.e. lower energy particles travel shorter path, and the higher energy particles travel

a longer path. However, the resulting compression ratio is reduced by a factor of 1/
√

2.

Since there is no constraint that the final bunch size should fit into the bucket, one can

regain the factor of
√

2 by staying longer at the UFP.
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V. EFFECT OF SPACE CHARGE FORCE

The wakefield induced by the space charge force can be described by a broadband

impedance given by

Z
‖
spch

n
= −j g0Z0

2βγ2
≈ −j1.0× 103 Ω, (23)

where, in a uniform transverse distribution approximation, g0 = 1
2

+ 2 ln b
a
≈ 4.5 is the

geometric factor, Z0 = µ0c = 377Ω is the impedance of the vacuum. Two major effects

arising from the space charge impedance are the potential well distortion and microwave

instability.

A. Potential Well Distortion

The energy gain per revolution due to the space charge force is

∆Uspch = − e
2

ω0

∣∣∣∣∣∣Z
‖
spch

n

∣∣∣∣∣∣ ∂ρ∂τ , (24)

Including the space charge force in numerical simulations, Eq. (5) should be modified as

δn+1 = δn +
eVrf

β2E
sinφn+1 +

∆Uspch

β2E
. (25)

To provide a first order estimation of the effect of space charge force on particle motion,

we carry out linear approximation to the rf and space charge force on particle motion. Using

a Gaussian bunch distribution with ρ = (NB/
√

2πστ) exp(−[τ 2/2σ2
τ ]), we find

∆Uspch = +
NBe2|Z‖spch/n|√

2πω0σ2
τ

τ

στ
exp{− τ 2

2σ2
τ

}. (26)

For an order of estimation, we use NB = 1×109 particles (Iavg ≈ 315 µA), στ ≈ 15.0 ns with

an rf voltage of 250 V. The resulting space charge energy gain is +23.2e−τ
2/2σ2

τ (τ/στ) eV.

This is to be compared with the linear rf restoring force eV ≈ −eVrf sinhω0τ ≈ −232 (τ/στ )

eV. Thus the actual space charge force is about 10% of that of the rf focusing force.
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Since the ratio of the space charge force to the rf force is proportional to 1/(Vrfσ
3
τ ) ∼

V −1/4
rf when the bunch matches the bucket, the net effect of space charge force increases as

the voltage is decreased. In our earlier example, the space charge force amounts to about

22% of that of the rf focusing force at Vrf = 10 V, and 27% at Vrf = 5 V. This large space-

charge force does distort the rf potential well significantly. However, it is not large enough to

cancel totally the rf focusing. In other words, there is still a rf bucket, although it has been

distorted significantly. On the other hand, the rf voltage was brought down adiabatically,

so that the bunch will always stay inside and fit the space-charge distorted bucket. Any loss

of particles is a result of the possible non-adiabaticity of the rf maneuvering or microwave

instability which we will discuss in the next subsection.

During the non-adiabatic bunch rotation stage, when the rf voltage is raised to a very

high value, the bunch start to rotate to the upright position for attaining a short bunch,

the space charge force can become as important as that of low voltage situation, because

the V
−1/4

rf rule does not apply anymore. However, this occurs only for a small fraction of

the rotation and affects mostly particles near the center of the bunch. The potential well

distortion gives rise to a smaller effective synchrotron tune near the center of the bunch.

This may help to compensate the smaller synchrotron tune for large amplitude particles. We

conclude that the potential well distortion should not be a critical factor in our experiment

and this is confirmed by numerical simulations.

B. Microwave Instabilities

The situation most dangerous to microwave instability is when the rf is lowered adia-

batically down to a few volts. Take the situation of NB = 1 × 109 protons in the bunch

having an rms length of στ = 15 ns filling the momentum aperture of the bucket at rf volt-

age 5 V. The peak current is Ipeak = eNB/(
√

2πστ) = 4.26 mA. The synchrotron tune is

νs = 8.23× 10−5. The half bucket height is found to be δ̂ = 2νs/(h|η|) = 5.23× 10−5. The

Keil-Schnell criterion for stability of a Gaussian bunch is [7]
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∣∣∣∣Zn
∣∣∣∣ < 2πβ2E|η|σ2

δ

eIpeak
= 156 Ω , (27)

where we have used δ̂ =
√

6σδ. This limit is roughly 6.5 times less than the space charge

impedance of the Cooler Ring. Simulations shows that significant microwave instability and

beam loss will occur if the space-charge impedance per harmonic Z/n of the ring is around

or larger than 1000 Ω. The growth is very fast and evolves fully in less than 0.5 ms which is

less than 1/10 of a synchrotron period. Since the rf bucket was mostly filled at Vrf = 5 V,

any growth due to microwave instability will leave particles outside the bucket resulting

to beam lost. Actually, we did see beam loss when Vrf was lowered adiabatically to 10 or

5 V. However, when we set |Z/n|spch ≤ 1000 Ω for the ring in the simulations, the effect of

microwave instability is rather mild and becomes insignificant. This agrees with the well-

known experience that the threshold of microwave instability below transition energy for a

space charge dominated ring is many times above the Keil-Schnell limit [8].

VI. CONCLUSION

At the IUCF cooler, the measured bunch compression ratios by the rf voltage and rf phase

manipulation methods are compared with theoretical and numerical simulations. Naturally,

the compression ratio depends on the initial rms bunch length and the highest attainable

compression ratio is limited by the non-linearities in the rf potential.

We find that the ultimate bunch compression ratio for the rf voltage manipulation is equal

to the ratio of the maximum bucket area to the bunch area, i.e. rv
c,max = AB,max/Abunch. In

the normalized synchrotron phase-space coordinates, the bucket area is 16, and the bunch

area is 6πσ2
φ,i, where we choose a factor of 6 for 95% of the beam, and the σφ,i is the initial rms

rf phase spread of the beam at the maximum rf voltage. Thus we find rv
c,max ≈ 8/(3πσ2

φ,i).

In reality, one may be able to achieve 70–80% of the maximum value because of nonlinearity

in synchrotron motion.

We found that, on the average, a minimum of 5 synchrotron oscillation periods were

required in order to guarantee adiabaticity during the bunch compression stage. The time
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required in the non-adiabatic voltage jump depends on the Q of the rf system. Furthermore,

during the rf voltage jump, beam loading can be an important issue that can induce dipole

mode oscillation. In actual application, dipole mode oscillation is not important because

the beam is kicked out at 1/4 of the synchrotron motion.

The ultimate bunch compression ratio in the rf phase shift method is given by rp
c,max =

√
2/(
√

3σφ,i). For the rf phase shift method, the time tufp at the UFP during the bunch

stretching stage is relatively short [see Eq. (22)]. The time for the rf phase jump depends on

the Q value of the rf system, generally, it is short compared with the synchrotron oscillation

period. Since the peak current during the rf phase jump is not changed, the effect of beam

loading will be minimized.

An advantage for the rf phase shift method is to avoid the nonlinearity in the rf potential

by making the last stage of bunch rotation in the transfer line. At a desired compression

ratio, the beam is kicked onto the transport line where a properly designed transport line

with suitable R56 transport matrix element can function as a buncher. Such method will

also work for bunch compression in electron storage rings, such as the damping ring for

linear colliders. Since the synchrotron period is usually shorter than the damping time, the

electron beam during the bunch compression stage at the UFP behaves like a proton bunch.

The final stage of bunch rotation is carried out in the transfer line.

In order to provide a fair comparison of these two bunch compression methods, the initial

bunch length should have the same initial voltage, i.e. V2. In the rf voltage jump method,

the rf voltage should be adiabatically decreased from V2 to V1, and non-adiabatically jumped

from V1 to V2. The actual compression factor should be

r̃v
c,max =

(
V2

V1

)1/4

=
(AB,max

Abunch

)1/2

≈
√

8√
3πσφ,i

, (28)

Comparing Eqs. (28) with (21), we find that the voltage jump methods is slightly more

favorable. However the rf voltage manipulation is limited by nonlinear synchrotron mo-

tion during the bunch rotation. The rf phase manipulation method can avoid nonlinear

synchrotron motion by employing the transfer line for the final bunch rotation.
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Finally, we also study the space charge effect on bunch rotation. We found that the

potential well distortion may help the bunch rotation in linearizing the synchrotron motion.

However, the effect at the IUCF Cooler is small. Since our experiments were carried out

below transition energy, the microwave instability was not important.
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TABLE I. A list of parameters for the experiment.

parameter symbol value

harmonic number h 5

circumference C 86.826 m

momentum compaction factor α 0.0473

kinetic energy KE 202.8 MeV

revolution frequency f0 1.96632 MHz

rf frequency frf 9.8316 MHz

phase slip factor η −0.6288

synchrotron tune at Vrf = 1000 V νs 1.164× 10−3
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FIG. 1. A typical beam profile of cooled beam at the IUCF Cooler Ring. The profile can be

fitted reasonably well by a Gaussian distribution shown as the solid line.
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FIG. 2. The evolution of a beam profile after the voltage is jumped to a high value. Each frame

is separated by about 83.33 µs or 164 revolutions. Parameters for this run are Iavg = 670 µA, rf

voltage ramp-down time from V0 = 350 V to V1 = 5 V is 27 ms, and the rf voltage is suddenly

raised to V2 = 1000 V in about 40 turns. The asymmetry in each beam profile indicated that there

was a small dipole mode, i.e. τ̄ − τs 6= 0. The dipole mode may arise from the beam loading on

the rf system.

20



FIG. 3. Left: The peak beam intensity in (mA) vs the average beam intensity in (µA) for our

phase-shift experimental data. Right: The beam brightness defined as the number of particles in

a bunch divided by the rms phase space area. The unit is 1012 particles/eV-s.
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FIG. 4. Compilation of rms bunch length vs initial rf voltage of a cooled beam in the IUCF

Cooler Ring. The line corresponds to a fit with στ = 28.1/V 1/4
rf ns, where Vrf is measured in Volts.
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FIG. 5. The bunch length derived from FWHM (left) and rms (right) methods during the

bunch compression using rf voltage manipulation. The beam condition is the same as that of

Fig. 2. Since the profile during the bunch rotation stage deviates substantially from Gaussian, the

bunch lengths derived from the FWHM method are much smaller than those derived from the rms

method. The bunch length is seen to increase in the first 30 ms when the rf voltage is adiabatically

lowered, and later oscillate rapidly with twice the synchrotron frequency after the rf voltage is

non-adiabatically raised.
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FIG. 6. Compression ratio versus voltage ratio. Experimental results are denoted by crosses.

Simulation result is denoted by circles with initial condition according to the initial bunch length.

Linear theory is denoted by the solid line. The value of V2 is fixed at 1000 V while V1 is varied to

obtain different compression ratio. The compression ratio spread at each voltage ratio is caused

by different initial beam conditions and experimental bandwidth limitation.
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FIG. 7. Compression ratio versus ωstufp where ωs is the small amplitude synchrotron angular

frequency and tufp is the time that the bunch stays at the UFP. The compression ratios derived

from FWHM analysis of experimental data are denoted by crosses. Simulation results are denoted

by circles using FWHM analysis and triangles with rms analysis. Linear theory is denoted by the

solid line, i.e. exp{ωstufp}. The compression ratio spread at each ωstufp is caused by different initial

beam conditions.
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FIG. 8. Evolution of bunch population through rf phase jump. Note that the particle motion

is relatively linear near the UFP. Nonlinear rf potential becomes most important when the rf phase

is shifted back to the SFP.
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